Show all factor pairs, prime factorization (factor tree), sum of factors (divisors), aliquot sum, and prime power decomposition of 50.

We do this by listing out all pairs of numbers greater than 0 and less than or equal to 50 who have a product equal to 50:

50 = 1 x 50

50 = 2 x 25

50 = 5 x 10

There are 3 factor pairs of 50.

1, 2, 5, 10, 25, 50

1, 5, 25

2, 10, 50

Proper factors are all factors except for the number itself, in this case 50

1, 2, 5, 10, 25

Now, show the prime factorization (factor tree) for 50 by expressing it as the product of ALL prime numbers.

50 = 2 x 25 <--- 2 is a prime number

Next step is to reduce 25 to the product of prime numbers:

25 = 5 x 5 <--- 5 is a prime number

Next step is to reduce 5 to the product of prime numbers:

1 + 50 + 2 + 25 + 5 + 10 =

The aliquot sum is the sum of all the factors of a number except the number itself

1 + 2 + 25 + 5 + 10 =