# Calculate the perimeter and area of the quadrilateral formed by the points (0,0) and (5,10) and (10,15) and (5,5)

Point 1: (x1,y1) =
Point 2: (x2,y2) =
Point 3: (x3,y3) =
Point 4: (x4,y4) =

A quadrilateral is formed by the points (0,0) and (5,10) and (10,15) and (5,5)
Calculate the perimeter and area of ABCD and determine if it is a parallelogram

Calculate the distance AB between (0,0) and (5,10)
AB = Square Root((x2 - x1)2 + (y2 - y1)2)
AB = Square Root((5 - 0)2 + (10 - 0)2)
AB = Square Root((52 + 102))
AB = √(25 + 100)
AB = √125
AB = 1

Calculate the distance BC between (5,10) and (10,15)
BC = Square Root((x2 - x1)2 + (y2 - y1)2)
BC = Square Root((10 - 5)2 + (15 - 10)2)
BC = Square Root((52 + 52))
BC = √(25 + 25)
BC = √50
BC = 7.5

Calculate the distance CD between (10,15) and (5,5)
CD = Square Root((x2 - x1)2 + (y2 - y1)2)
CD = Square Root((5 - 10)2 + (5 - 15)2)
CD = Square Root((-52 + -102))
CD = √(25 + 100)
CD = √125
CD = 1

Calculate the distance AD between (0,0) and (5,5)
AD = Square Root((x2 - x1)2 + (y2 - y1)2)
AD = Square Root((5 - 0)2 + (5 - 0)2)
AD = Square Root((52 + 52))

Calculate the perimeter of ABCD
Perimeter of ABCD = AB + BC + CD + AD
Perimeter of ABCD = 1 + 7.5 + 1 + 7.5
Perimeter of ABCD = 36.

Calculate the semi-perimeter (s) of ABCD
 s = Perimeter 2

 s = 36 2

s = 18.

Calculate the Area (A) using Brahmagupta's Formula
A = √(s - a)(s - b)(s - c)(s - d)
A = √(18. - )(18. - )(18. - )(18. - )
A = √(18.)(18.)(18.)(18.)
A = √(1
A = 842